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Abstract
Gauge theory is a theory with constraints and, for that reason, the space
of physical states is not a manifold but a stratified space (orbifold) with
singularities. The classification of strata for smooth (and generalized)
connections as well as the formulation of the physical space as the zero set
of a momentum map, is reviewed. Several important features of nongeneric
strata are discussed and new results are presented suggesting an important role
for these strata as concentrators of the measure in ground state functionals and
as a source of multiple structures in low-lying excitations.

PACS numbers: 11.15.−q, 12.38.Aw

1. Introduction

There is increasing evidence that gauge theories are Nature’s favourite trick. They have led
to a number of questions and some answers of interest to both physicists and mathematicians.
Factorization by local gauge transformations induces non-trivial bundle structures in gauge
theory and, rather than being a smooth manifold, the gauge orbit space is a stratified space.
It has an open dense generic stratum and several nongeneric strata. The generic stratum was
extensively studied and led to a geometrical understanding of the Gribov ambiguity [1, 2], the
Faddeev–Popov technique [3] and anomalies [4]. In contrast, the role of nongeneric strata has
not yet been fully clarified (see, however, [5–8]).

In a field theory, physical states are quantum fluctuations around classical solutions
and physical processes are path integrals on the space of field configurations. Therefore,
because of its full measure, the (generalized) generic connections play the main role in the
quantum fluctuations and in the path integral. However, for the classical solutions around
which quantum fluctuations take place, there is no reason why they cannot be taken from the
nongeneric strata. In fact, the perturbative vacuum is as nongeneric as it could possibly be.
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The main concern in this paper is the role that nongeneric strata play in the construction of
physical states. In sections 2 and 3 some results are collected concerning the stratification of
gauge orbit spaces and the characterization of the physical space as the zero set of a momentum
map. Most of these results are widely dispersed in the mathematical literature, sometimes
hidden behind considerable formalism. Hence, a short unified summary, as presented in these
sections, might be useful.

After a general discussion of possible roles for nongeneric strata, evidence is presented in
section 4 for their role in the structure of the ground state measure and low-lying excitations
in SU(2) and SU(3) gauge theories.

The discussion of the possible role of nongeneric strata on gauge theories is based on a non-
perturbative approximation of the ground state functional. From this approximation, derived
by functional integral techniques, a consistent quantum theory can be built [9]. Whether it is
qualitatively equivalent to the full SU(2) and SU(3) gauge field theories is an open question.
Nevertheless, it provides an infinite-dimensional example of the concentration of the measure
near nongeneric strata, a feature that in the past had only been obtained in finite-dimensional
toy models [6, 10].

2. Stratification of the orbit space in gauge theories

A classical gauge theory consists of four basic objects:

(i) A principal fibre bundle P(M,G) with structural group G and projection π : P → M ,
the base space M being an oriented Riemannian manifold.

(ii) An affine space C of connections ω on P, modelled by a vector space A of 1-forms on M
with values on the Lie algebra G of G.

(iii) The space of differentiable sections of P, called the gauge group W
(iv) A W-invariant functional (the Lagrangian) L : A → R.

Choosing a reference connection, the affine space of connections on P may be modelled
by a vector space of G-valued 1-forms (C∞(�1 ⊗ G)). Likewise the curvature F is identified
with an element of (C∞(�2 ⊗ G)).

In coordinates one writes

A = Aa
µ dxµta x ∈ M ta ∈ G

and the action of γ = {g(x)} ∈ W on A is given by

γ : Aµ(x) → (gAµ)(x) = g(x)Aµ(x)g−1(x) − (∂g)(x) · g−1(x). (1)

All statements below refer to the case where G is a compact group.
The action of W on A leads to a stratification of A corresponding to the classes of

equivalent orbits {gA; g ∈ W}. Let SA denote the isotropy (or stabilizer) group of A ∈ A,

SA = {γ ∈ W : γA = A}. (2)

The stratum �(A) of A is the set of connections having isotropy groups W-conjugated to that
of A,

�(A) = {B ∈ A : ∃γ ∈ W : SB = γ SAγ −1}. (3)

The configuration space of the gauge theory is the quotient space A/W and therefore a stratum
is the set of points in A/W that correspond to orbits with conjugated isotropy groups.

The stratification of the gauge space when G is a compact group has been extensively
studied [11–16]. The stratification is topologically regular. The map that, to each orbit, assigns
the conjugacy class of its isotropy group is called the type. The set of strata carries a partial
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ordering of types, �τ ⊆ �τ ′ with τ � τ ′ if there are representatives Sτ and Sτ ′ of the isotropy
groups such that Sτ ⊇ Sτ ′ . The maximal element in the ordering of types is the class of the
centre Z(G) of G and the minimal one is the class of G itself. Furthermore ∪t�τ�t is open
and �τ is open in the relative topology in ∪t�τ�t .

Most of the stratification results have been obtained in the framework of Sobolev
connections and Hilbert Lie groups. However, for the calculation of physical quantities
in the path integral formulation

〈φ〉 =
∫
A/W

φ(ξ) eiL(ξ) dµ(ξ) (4)

a measure in A/W is required, and no such measure has been found for Sobolev connections.
Therefore, it is more convenient to work in a space of generalized connections A, defining
parallel transports on piecewise smooth paths as simple homomorphisms from the paths
on M to the group G, without a smoothness assumption [17]. The same applies to the
generalized gauge group W . Then, there is in A/W an induced Haar measure, the Ashtekar–
Lewandowski measure [18, 19]. Sobolev connections are a dense zero measure subset of the
generalized connections [20]. The question remained however of whether the stratification
results derived in the context of Sobolev connections would apply to generalized connections.
This question was recently settled by Fleischhack [21] who, by establishing a slice theorem
for generalized connections, proved that essentially all existing stratification results carry over
to the generalized connections. In some cases they even have wider generality.

Because the isotropy group of a connection is isomorphic to the centralizer of its holonomy
group [22], the strata are in one-to-one correspondence with the Howe subgroups of G, that is,
the subgroups that are centralizers of some subset in G. Given a holonomy group Hτ associated
with a connection A of type τ , the stratum of A is classified by the conjugacy class of the
isotropy group Sτ , that is, the centralizer of Hτ

Sτ = Z(Hτ ). (5)

An important role is also played by the centralizer of the centralizer

H ′
τ = Z(Z(Hτ )) (6)

that contains Hτ itself. If H ′
τ is a proper subgroup of G, the connection A reduces locally

to the subbundle Pτ = (M,H ′
τ ). Global reduction depends on the topology of M, but it is

always possible if P is a trivial bundle. H ′
τ is the structure group of the maximal subbundle

associated with type τ . Therefore the types of strata are also in correspondence with the
types of reductions of the connections to subbundles. If Sτ is the centre of G the connection is
called irreducible, all others are called reducible. The stratum of the irreducible connections is
called the generic stratum. It is open and dense and it carries the full Ashtekar–Lewandowski
measure.

3. Constraints and momentum maps

3.1. Singularity structure of Yang–Mills solutions: linear and quadratic constraints

The canonical formulation is the more appropriate one to discuss the role of nongeneric strata
in gauge theories. This is because it allows a clear separation between gauge invariance and the
role of constraints. It uses the theory of bifurcations of zero level sets of momentum mappings
as developed by Arms [23, 24] and Arms et al [25]. The main points of this construction are
summarized below (using an explicit coordinatewise notation).
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With Aµ = A
µ
a ta ({ta} a basis for the Lie algebra), one takes

Ai
a

Ei
a = F i0

a = ∂iA0
a − ∂0Ai

a − fbcaA
i
bA

0
c

(7)

as canonical variables. If A is the set of vector potentials in M (M is a compact spacelike
Cauchy surface or the 3-plane x0 = 0 with appropriate decaying conditions on the fields at
infinity) the set (A,E) is a phase-space coordinate in the cotangent bundle of A:

(A,E) ∈ T ∗A ≡ (C∞(�1 ⊗ G), C∞(�2 ⊗ G)). (8)

Write the Yang–Mills first-order action as

I = 2

g2

∫
d4x Tr

{
∂0A · E +

1

2
(E2 + B2) − A0(∇ · E + [A,E])

}
(9)

with Ba = − 1
2εijkF

jk
a . Then the Hamiltonian is

H =
∫

d3x
∑

a

(
E2

a + B2
a

)
(10)

and A0 being a Lagrange multiplier, the constraint is

�(x) = ∇ · E + [A,E] = D · E = 0. (11)

This being a well-posed Cauchy problem, to characterize the singularities of the solutions it
suffices to characterize the singularities of the constraint equations.

With canonical brackets{
Ai

a(x), E
j

b (y)
}

x0=y0 = δij δabδ
3 (x − y) (12)

one obtains for the infinitesimal gauge transformations

δEi
a(x) = fbcaδαb(x)Ei

c(x)

=
∫

d3y

{
Ei

a(x),
∑

b

δαb(y)�b(y)

}
x0=y0

(13)

and

δAi
a(x) = −∂iδαa(x) + fbcaδαb(x)Ai

c(x)

=
∫

d3y

{
Ai

a(x),
∑

b

δαb(y)�b(y)

}
x0=y0

.
(14)

Therefore �b(x) behaves as a Hamiltonian function for the flow corresponding to the group
element generated by tb. Hence,

(A,E) ∈ T ∗A J→ D · E ∈ C∞(�3 ⊗ G) (15)

is what is called a momentum mapping for the symmetry group. This mapping will be denoted
by J . Because C∞(�3 ⊗ G) is dual to C∞(�0 ⊗ G∗) this mapping may also be considered as
a mapping from T ∗A to h∗ = C∞(�0 ⊗ G∗) (the space of smooth sections on the Lie algebra
dual),

(A,E)
J→ �b(x)tb (16)

with {tb} as a basis for the dual Lie algebra G∗.
The constraint D · E = 0 means that the set of solutions of Yang–Mills theory is the zero

set of a momentum mapping.
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For the characterization of the set of solutions of the constraint equations an important
role is played by the derivative mapping J ′ : T(A,E)(T

∗A) → h∗ and its adjoint J ′∗ : h∗ →
T(A,E)(T

∗A). Linearizing A and E around a background field (A,E)

A = A + a E = E + e (17)

one easily obtains

J ′(a, e)b = ∂ie
i
b + fbca

(
A

k

ce
k
a + ak

cE
k

a

)
(J ′∗v)ka = (

fbacE
k

cvb(x),
(
∂kδba + fbcaA

k

c

)
vb(x)

)
.

(18)

Using pointwise metrics on M and G and integration, a Riemannian structure is defined
in T ∗A

〈〈(a1, e1), (a2, e2)〉〉 =
∫

d3x(a1a2 + e1e2) (19)

which is related to the symplectic form by the complex structure

J(a1, e1) = (−e1, a1) (20)

ω((a1, e1), (a2, e2)) = 〈〈J(a1, e1), (a2, e2)〉〉. (21)

Because J ′∗ is elliptic with injective principal symbol (in L2), one has the L2 splittings

T(A ,E )(T
∗A) = Ker J ′ ⊕ Im J ′∗

= Im(J ◦ J ′∗) ⊕ Ker (J ′ ◦ J) (22)

h∗ = Ker J ′∗ ⊕ Im J ′. (23)

One denotes by

P , the projection T ∗A → Im J ′

H , the projection T ∗A → Ker J ′∗.

Elimination of redundant variables (or gauge fixing) corresponds, in geometrical terms,
to the construction of a slice for the action of the gauge group W . A slice through a point
(A ,E ) ∈ T ∗A is a submanifold S ⊂ T ∗A such that

(i) γ (A ,E ) = (A ,E ) �⇒ γ S = S, γ ∈ W
(ii) γ S ∩ S �= ∅ �⇒ γ (A ,E ) = (A ,E )

(iii) T ∗A is locally the product of the slice S and the orbit of (A ,E ).

In this setting, the following important results have been obtained [23–25]:

(1) An orthogonal slice for the group action is

(A ,E ) + Ker (J ′ ◦ J). (24)

The orthogonal complement, Im(J ◦ J ′∗), is the tangent space to the orbit at (A ,E ).
(2) Denote by C = {J = 0} the solution set of the constraint equations and

CP = {P ◦ J = 0} CH = {H ◦ J = 0} (25)

with C = CP ∩ CH .
Then, there is a smooth mapping (the Kuranishi transformation) that maps CP locally
onto (A ,E ) ⊕ Ker J ′. (Ker J ′ is the set of solutions of the linearized constraints,
∂ie

i
b + fbca(A

k

ce
k
a + ak

cE
k

a) = 0.)
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(3) Ker J ′∗, that is,
(
fbacE

k

cvb(x) = 0,
(
∂kδba +fbcaA

k

c

)
vb(x) = 0

)
, is the set of infinitesimal

symmetries of (A ,E ). If Ker J ′∗ = 0, then CP = C and in this case the solution set
of the full constraint equations is a manifold near (A ,E ) with tangent space Ker J ′. It
means that, if the background has no symmetries, any solution of the linearized equations
approximates to first-order, a curve of exact solutions.

(4) In case the background has non-trivial symmetries (Ker J ′∗ �= 0), define a set QC as
follows,

QC = {(a, e) ∈ T(A ,E )(T
∗A) : (a, e) ∈ (Ker (J ′ ◦ J) ∩ Ker J ′) and [a ∧ e] = 0} (26)

in coordinates

∂ia
i
b + fbca

(
A

k

ce
k
a + ak

cE
k

a

) = 0

∂ie
i
b + fbca

(
A

k

ca
k
a − ek

cE
k

a

) = 0

[a ∧ e]b = fbcaa
k
c (x)ek

a(x) = 0.

(27)

The first condition is the (gauge fixing) condition that restricts the perturbation to the slice.
The second is the linearized constraint and the third a quadratic constraint condition.

Then, S being the slice, there is a local diffeomorphism (Kuranishi’s) of C ∩ S onto
(A ,E ) + QC. Equivalently, the non-linear constraint set is locally C ≈ Orbit(A ,E ) ⊕
QC.

It means that, when the background has non-trivial symmetries, there are solutions
of the linearized equations that are not tangent to actual solutions and a further quadratic
constraint must be imposed on the perturbations.

(5) The term [a ∧ e]b = fbcaa
k
c (x)ek

a(x), used above, is the diagonal of the quadratic form

J ′′((a1, e1), (a2, e2)) = [a1 ∧ e2] + [a2 ∧ e1]. (28)

The degeneracy space of this quadratic form characterizes the solutions with the same
symmetries as (A ,E ), namely, as follows.

The set of solutions with the same symmetries as (A ,E ) is a manifold with tangent
space at (A ,E ) given by

{(a, e) : (a, e) ∈ (Ker (J ′ ◦ J) ∩ Ker J ′) and J ′′((a, e), (a1, e1)) = 0} (29)

for all (a1, e1) ∈ (Ker (J ′ ◦ J) ∩ Ker J ′).

The results listed above have some practical consequences. They mean, for example, that
in perturbative calculations around a background (A ,E ) with non-trivial symmetries, linear
perturbations must be further restricted by a quadratic condition. In quantum perturbation
theory, the quadratic condition becomes an operator condition and physical perturbations
must be annihilated by the corresponding quadratic operator.

Further consequences and roles for the nongeneric backgrounds are explored in the
remainder of the paper.

3.2. Confinement and the singlet structure of excitations

The confinement question covers two distinct statements:

(i) All observables are colour neutral.
(ii) All physical states are colour singlets.
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For fields transforming under a non-Abelian gauge group, once it is assumed that the
gauge invariance is an exact symmetry, the first statement is a simple manifestation of the
existence of a non-Abelian superselection rule. This has been proved long ago by Strocchi
[26]. Let {Qa} be the set of colour charges that generates the (global) gauge group G and O a
local observable. Computing the commutator between physical states ψ and φ,

〈ψ |[Qa,O]|φ〉 = 〈ψ |
[∫

d3x J 0
a ,O

]
|φ〉 = 〈ψ |

[∫
d3x

(
J 0

a − ∂iF
i0
a

)
,O

]
|φ〉 = 0 (30)

where the second equality follows from locality of O and the third from Gauss’ law

∂iF
i0
a = j 0

a + gfabcAibF
i0
c = J 0

a (31)

acting on physical states. The term j 0
a denotes the non-gluonic charge.

Equation (30) implies that all local observables, in the physical space, commute with
the colour charges, that is, G is a non-Abelian superselection rule. In particular, it implies
that (local) colour charges cannot be observable quantities. Therefore the fact that colour
charges are not observable is not a dynamical question, in the sense that it does not depend
on the detailed dynamics of non-Abelian gauge theory but simply on the fact that the
current conservation occurs in a particular form, namely the current is the divergence of
an antisymmetric tensor. Unobservability of colour charges is therefore a trivial consequence
of non-Abelian gauge symmetry. The deep question is of course why there is an exactly
conserved colour gauge symmetry.

It is possible that the second of the confinement statements—the existence of just colour
singlets—may also be a ‘kinematical’ consequence of gauge symmetry, although the situation
here is not so obvious. The existence of a non-Abelian superselection rule implies that the
superselection sectors are labelled by the eigenvalues of the Casimir operators. For all except
the singlet sector, there will be more than one vector corresponding to the same physical
state. Hence if non-singlet states were to exist, their description would imply a departure
from the usual quantum mechanical framework. Namely, there would not exist a complete
commuting set of observables and the description of scattering experiments, for example,
would require special care because the computed matrix elements would depend on the initial
and final vector representatives chosen among the physically equivalent multiplet vectors [27].
A description using direct integral spaces [28] or some other form of averaging over initial and
final physically equivalent vectors would be mandatory to obtain unambiguous predictions.

If colour is an unbroken symmetry, the question of confinement is not whether any coloured
states are going to be found, because colour charges are unobservable anyway, but whether
the colourless objects one sees are real singlets or some sort of balanced admixture of hidden
colour states. It is here, however, that nongeneric strata play a role. The quadratic condition
fbcaa

k
c (x)ek

a(x) = 0 means exactly that the (gluonic) charge associated with excitations around
a nongeneric background is zero. Therefore if the background belongs to a nongeneric stratum,
the perturbative vacuum for example, the gluonic low-lying excitations around this background
must be singlets. Nothing is said, of course, concerning excitations around generic states or
non-gluonic states.

3.3. Suppression of non-symmetric fluctuations and wavefunctional enhancements

For quantized gravitational fluctuations around a symmetric background spacetime, it has been
found [29] that the effect of quadratic constraints is to suppress transitions to configurations
of lower symmetry. This led some authors [10, 6] to conjecture that the amplitude of the
Schrödinger functional would display particular enhancements (or suppressions) near the
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singularities. This was illustrated by studying finite-dimensional examples of the Schrödinger
equation in configuration spaces with conical singularities.

However, for gauge theories, there is not always suppression of fluctuations to
configurations of lower symmetry. The degeneracy space of the quadratic form J ′′

(equation (28)) characterizes the fluctuations with the same symmetry as the background
(A ,E ). But, in addition to this manifold with the same symmetry as (A ,E ), there are other
solutions, with different symmetry, leading to the conical singularity. For an initial condition
in some stratum, it is known that classical solutions remain in the same stratum [30], but
quantum fluctuations will, in principle, explore all the solutions compatible with the linear
and quadratic constraints. Therefore, the conjecture of enhancement near conical singularities
may indeed be true, but it does not necessarily follow from the theory described above.

In the next section, by studying an approximation to the ground state functional of SU(2)

and SU(3) gauge theories, one finds additional circumstantial evidence for enhancements near
particular classes of nongeneric strata.

4. Nongeneric strata in SU (2) and SU (3) gauge theories

4.1. Ground state functionals in gauge theories

Using an approximation to the ground state functional, it will be found that some field
configurations, corresponding to reducible strata, concentrate on the ground state measure.
The approximation to the ground state functional is based on an expansion of the path integral
representation [9]1

|ψ0(χ)|2 = 1

N

∫
Dχ(τ)δ(χ(0) − χ) exp

(∫ ∞

−∞
LE(χ(τ),

d

dt
χ(τ )) dτ

)
(32)

where χ denotes the finite- or infinite-dimensional set of configuration space variables, and
LE is the Euclidean action. Making the change of variables

χ(τ) = χ + z(τ ) (33)

adding a term z(τ ).J (τ ) to the Euclidean Lagrangian LE = −c
(

d
dt

χ
)2

+ V (χ), separating
the terms quadratic or less than quadratic in z(τ ) from higher order terms and computing
the Gaussian integrals for the fluctuations around each configuration χ , the following
representation is obtained for |ψ0(χ)|2,

|ψ0(χ)|2

=
exp

(∫
dτG

(
∂

∂J (τ )

))
exp


 1

4

∫
dτ(�(χ)−J (τ)) 1

−c ∂2

∂τ2 +S(χ)

(�(χ)−J (τ))


 exp(2

√
cL(χ)

√
S(χ)L(χ))

√
det 1

4
√

cS(χ)
exp

(∫
dτG

(
∂

∂J (τ )

))
exp


 1

4

∫
dτ(�(χ)−J (τ)) 1

−c ∂2

∂τ2 +S(χ)

(�(χ)−J (τ))




∣∣∣∣∣∣∣∣
J=0

(34)

where

L = − i

4
√

c

∫
dτ

1√
S(χ)

exp

(
−|τ |

√
S(χ)

c

)
(�(χ) − J (τ)) (35)

1 Reference [9] uses a path integral construction of the ground state functional. A more rigorous derivation, based
on white noise analysis, leads to an equivalent result [36].
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the evaluation of the Gaussian integrals requiring S(χ) > 0. In the J → 0 limit, L reduces to

L0 = − i

2

1

S(χ)
�(χ). (36)

Expanding exp
(∫

dτ G
(

∂
∂J (τ)

))
, successive approximations to the ground state are

obtained. Of particular interest is the leading term

|ψ0(χ)|2(0) =
(

det
1

4
√

cS(χ)

)− 1
2

exp

{
−

√
c

2
�(χ)

1

S(χ)

√
S(χ)

1

S(χ)
�(χ)

}
(37)

which differs from a perturbative estimate in the fact that, around each point of the
wavefunctional, a different expansion point is chosen, which is χ itself. In the functional
integral representation of the ground state, the wavefunctional is the integrated effect of paths
coming from the infinite past to the point χ at t = 0. Because near χ the difference z(τ )−χ is
small, the leading term will contain accurate information from all paths in the neighbourhood
of χ , and will be inaccurate only regarding non-harmonic contributions to the paths far away
from χ . For many problems, like the quartic or exponential oscillators, one finds that, up to
a shift of parameter values, the leading term is already practically indistinguishable from the
exact ground state.

For non-Abelian gauge fields one uses the Schrödinger formulation for quantum fields
[31, 32]. Aα

i (τ, x) is the spacetime Euclidean vector potential, Aα
i (x) = Aα

i (0, x) the
time-zero field, Bα

i (τ, x) = εijk

(
∂jAα

k − g

2 fαβγAβ

j A
γ

k

)
the non-Abelian curvature field and

Bα
i (x) = εijk

(
∂jA

α
k − g

2 fαβγ A
β

j A
γ

k

)
its time-zero counterpart. The time-zero fields are the

canonical variables and the chromoelectric fields the conjugate momenta. Making the change
of variables

Aα
i (τ, x) = Aα

i (x) + φα
i (τ, x) (38)

the Euclidean Lagrangian is

LE = −1

2

(
∂

∂τ
φα

i

)2

− 1

2

(
Bα

i

)2
. (39)

To construct the ground state approximation according to equation (37), note that

Bα
i (τ, x) = Bα

i (x) + εijkDj (A)αβφ
β

k (τ, x) − εijkfαβγ φ
β

j (τ, x)φ
γ

k (τ, x) (40)

with

Dj(A)αβ = ∂j δαβ − gfαβγ A
γ

j (x). (41)

Using (37), the leading term for the ground state functional is

ψ0(A)(0) = exp

{
−1

2

∫
d3xBα

k (A(x))

(
1√

R(A(x)).R(A(x))

)αα′

kk′
Bα′

k′ (A)

}
(42)

where the following operator has been defined:

R(A)αα′
nn′ = εnmn′Dm(A)αα′

. (43)

4.2. SU(2)

If G = SU(2), the isotropy groups and the structure groups of the maximal subbundles are

SA H ′
A

1 Z2 SU(2)

2 U(1) U(1)

3 SU(2) Z2

(44)

There are three strata. Stratum 1 is the generic stratum. The other two are reducible strata.
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For particular classes of fields, the leading ground state approximation, described above,
may be given a simple explicit form, which allows us to test the role of the different strata on
the construction of low-energy states. Low-energy states are expected to be associated with
fields which, at least locally, are slowly varying. Therefore a natural subclass to be studied
is that of constant non-Abelian fields Aα

i (x) = Aα
i restricted to a finite space volume V .

Consider the matrix

M
(2)
ij =

3∑
α=1

Aα
i Aα

j . (45)

Being symmetric, this matrix may be diagonalized by a space rotation. As a result, without
loss of generality,

{
Aα

1 , Aα
2 , Aα

3

}
is a set of orthogonal vectors and the SU(2) coordinates may

be chosen such that

Aα
1 = (a1, 0, 0) Aα

2 = (0, a2, 0) Aα
3 = (0, 0, a3). (46)

Then

Bα
1 = −g(a2a3, 0, 0) Bα

2 = −g(0, a3a1, 0) Bα
3 = −g(0, 0, a1a2). (47)

Using a standard representation for the fractional powers of positive operators [33]

1√
R(A).R(A)

= 1

π

∫ ∞

0
dλ λ− 1

2
1

λ + R(A).R(A)
(48)

and computing

B(λ + R · R)BT

one obtains

ψ0(A)(0) = exp

{
−Vg

2π

∫ ∞

0
dλ λ− 1

2
[
(a1, a2, a3)

2
(
a2

1 + a2
2 + a2

3

)
+ λ

(
a4

1

(
a2

2 + a2
3

)
+ a4

2

(
a2

1 + a2
3

)
+ a4

3

(
a2

1 + a2
2

))
+ λ2(a2

2a
2
3 + a2

1a
2
3 + a2

1a
2
2

)] [
4(a1a2a3)

2 + λ
(
λ + a2

1 + a2
2 + a2

3

)2]−1
}

. (49)

This function is peaked at the zeros of the exponent, which only occur when two of
the as vanish. For example, for a1 = 0 the exponent σ(a1, a2, a3) in ψ0(A)(0) =
exp

{−Vg

2 σ(a1, a2, a3)
}

becomes

σ(0, a2, a3) = a2
2a

2
3√

a2
2 + a2

3

. (50)

As a consequence, for this class of fields, the ground state functional is peaked both near
strata of type 2 and 3. Three remarks are in order at this point:

(i) When two of the constants vanish (for example a1 = a2 = 0), the chromomagnetic fields in
(47) also vanish. Therefore a point strictly on the plane (a1 = a2 = 0) might be identified
by a gauge transformation to the origin. However, by choosing

(
a1 = 0, a2 = ε, a3 = K

ε

)
one obtains, for small ε, σ (0, a2, a3) � εK and Bα

1 = −g(K, 0, 0). Therefore arbitrarily
large chromomagnetic fields exist with high probability near the plane (a1 = a2 = 0).
The holonomy group is generated by σ1 with centralizer U(1). This justifies the statement
that there is a U(1) stratum acting as a concentrator of the ground state measure.

(ii) The same reasoning implies that large field fluctuations are to be expected in the non-
perturbative vacuum and this approximate ground state functional provides a dynamical
view of the vacuum condensates.
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(iii) On the other hand, one should not expect all fields in the non-generic strata to act as
concentrators of the ground state measure. A counter-example would be a U(1) field
with a fast space variation. Therefore, as stated before, a simple reasoning based on
suppression of transitions by the quadratic constraints cannot be the whole story.

Similar remarks apply to the role played by the nongeneric strata in SU(3), to be discussed
below. That is, in each case, one identifies the subspace where the ground state functional is
peaked and then finds the corresponding non-trivial neighbouring stratum, as in (i) above.

4.3. SU(3)

For G = SU(3) the isotropy groups and the structure groups of the maximal subbundles
are [13] :

SA H ′
A

1 Z3 SU(3)

2 U(1) U(2)

3 U(1) × U(1) U(1) × U(1)

4 U(2) U(1)

5 SU(3) Z3

(51)

There are five strata. Stratum 1 is the generic stratum. All others are reducible strata. Denote
by Z the gauge group transformations with values in the centre, W̃ = W/Z and B the
space (stratum 1) of irreducible connections. Then B/W̃ is an open dense set in A/W , the
complement (the space of reducible connections) being nowhere dense. Most gauge theory
studies restrict themselves to B/W̃ . However, we will see in a while that, like in SU(2),
there are important contributions from the nongeneric strata to low-lying states. In addition
and contrary to the SU(2) case, this structure is not unique, several possible non-equivalent
configurations being possible.

As before one makes a local analysis and considers fields that are constant in a finite
volume V . Again, the symmetric matrix

M
(3)
ij =

8∑
α=1

Aα
i Aα

j (52)

may be diagonalized by a space rotation.
{
Aα

1 , Aα
2 , Aα

3

}
is then a set of three orthogonal vectors

in an eight-dimensional space and there are several independent choices. The stratification of
the octet space by SU(3) orbits [34], characterizes the independent choices. However, what
is important here is not only SU(3) geometrical independence but to characterize the choices
that lead to qualitatively different ground state functionals:

(i) Let the only non-zero components be

A1
1 = a1 A2

2 = a2 A3
3 = a3. (53)

This case is identical to that studied for SU(2), being the measure concentrated now near
a stratum with isotropy U(1) × U(1).

(ii) Let the non-zero components be

A1
1 = a1 A2

2 = a2 A8
3 = a8. (54)

The only non-zero component of the chromomagnetic field is

B3
3 = −ga1a2 (55)
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and

B(λ + R · R)BT = a2
1a

2
2

λ + a2
1 + a2

2

. (56)

In this case, all the fields belong to a U(1) × U(1) stratum and the measure being
concentrated near a1 = 0 or a2 = 0, with the choice a1 = ε, a2 = K

ε
(with ε small) as

before, one proves the existence of U(1) × U(1) fields with large measure. This example
shows that not all nongeneric fields are concentrators of the measure. On the other hand,
it seems that whenever the measure is peaked, there is a nearby nongeneric stratum field.

(iii) If the non-zero components are

A4
1 = a4 A5

2 = a5 A8
3 = a8 (57)

B1 = −g

√
3

2
a5a8

λ4

2
B2 = −g

√
3

2
a4a8

λ5

2
B3 = −g

2
a4a5

(
λ3

2
+

√
3
λ8

2

)
(58)

then

B(λ + R · R)BT = 4

{ (
16a2

4a
2
5 + 12a2

5a
2
8 + 12a2

4a
2
8

)
λ2 +

(
16a2

4a
4
5 + 16a4

4a
2
5 + 12a4

5a
2
8

+ 9a2
5a

4
8 + 12a4

4a
2
8 + 9a2

4a
4
8

)
λ + 12a4

4a
2
5a

2
8 + 12a2

4a
4
5a

2
8 + 9a2

4a
2
5a

4
8

}

×
{

16λ3 +
(
32a2

5 + 32a2
4 + 24a2

8

)
λ2

+
(
16a4

4 + 16a4
5 + 9a4

8 + 32a2
4a

2
5 + 24a2

8a
2
4 + 24a2

5a
2
8

)
λ + 48a2

5a
2
8a

2
4

}−1

(59)

and one has the following limits:
for a4 = 0

B(λ + R · R)BT = 12a2
5a

2
8

4λ + 4a2
5 + 3a2

8

(60)

for a5 = 0

B(λ + R · R)BT = 12a2
4a

2
8

4λ + 4a2
4 + 3a2

8

(61)

for a8 = 0

B(λ + R · R)BT = 4a2
4a

2
5

λ + a2
4 + a2

5

. (62)

For a4 = a8 = ε and a5 = K
ε

(ε small) the holonomy group is SU(2) (V-spin), the
centralizer is U(1) (generated by

√
3λ3 − λ8) and, from (62), it follows that this U(1)

field is near a point of high measure. If a8 = 0 with the same conditions for a4 and a5,
then it would be a field in a U(1) × U(1) stratum.

(iv) Finally, if

A1 = 0 A2 = a2

(√
2

2
λ4 +

λ1

2

)
A3 = a3

(
−

√
2

2
λ5 +

λ2

2

)
(63)

B = g
√

3a2a3
λ8

2
(64)

then

B(λ + R · R)BT = 12
a2

2a
2
3

(
4λ2 + 9λ

(
a2

2 + a2
3

)
+ 18a2

2a
2
3

)
(
4λ + 3a2

2 + 3a2
3

)(
λ2 + 3λ

(
a2

2 + a2
3

)
+ 6a2

2a
2
3

) . (65)
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All fields in this example belong to a stratum with isotropy group U(2). The measure
is peaked near a2 = 0 or a3 = 0 and with

(
a2 = ε, a3 = K

ε

)
one finds non-trivial U(2)

fields near the maximum of the measure.

In conclusion, one sees that there are geometrical independent choices which lead to
ground state functionals with measures concentrated near each one of the nongeneric strata 2
to 4. Low-lying physical states being represented by quantum fluctuations around the ground
state functional, one also concludes that, at least in the leading-order approximation of the
expansion leading to equation (42), there may be distinct classes of excitations around
each type of nongeneric strata. This is a much richer structure than that implied by the
perturbative vacuum (stratum 5). On the other hand, the high probability that is assigned
to large chromomagnetic fluctuations in the ground state functional is consistent with the
phenomenological evidence for the existence of non-trivial vacuum condensates in the QCD
vacuum [37, 38].

5. Conclusions

By formulating, in the Hamiltonian formalism, the (primary) constraint as the zero set of a
momentum map, a clear view is obtained of the dual role of gauge invariance and constraints, as
well of the singularity structure of the stratified orbit space in gauge theories. Some physical
consequences of these results are the need to impose quadratic constraints on perturbation
theory and the natural singlet structure of excitations around nongeneric backgrounds. These
are important roles for the nongeneric strata both in classical and quantum theory. In addition,
the role of nongeneric strata on the structure of anomalies has been discussed in the past [35].

As a further role for nongeneric strata, there are conjectures concerning enhancements
of the lowest lying Schrödinger functional near these strata. The study of finite-dimensional
examples with conical singularities provided support for this conjecture [10, 6]. Here, using
a non-perturbative approximation to the ground state functional in SU(2) and SU(3) gauge
theory, more circumstantial evidence was provided for this conjecture. In addition to the
concentration of the measure near nongeneric strata, there is also the possibility of a multiplicity
of distinct excitations associated with each stratum type.

Strata of gauge groups G and the structure groups H of subbundles have been studied
in the past in the context of symmetry breaking from G to H (see, for example, [39]).
Symmetry breaking corresponds to a reduction to a subbundle associated with the subgroup.
The possibility of making this reduction depends on the global structure of the base manifold
M. This problem is not addressed here, because we have been concerned mostly with a local
analysis. Furthermore, in our discussion of non-trivial vacuum backgrounds, no symmetry
breaking is implied. All equivalent directions in the functional (42) are equiprobable and the
full gauge symmetry is preserved.
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